What say you?
You’ve probably been told that an airfoil produces lift because it is curved on top and flat on the bottom. But you shouldn’t believe it, not even for an instant.
Presumably you are aware that airshow pilots routinely fly for extended periods of time upside down. Doesn’t that make you suspicious that there might be something wrong with the story about curved on top and flat on the bottom?
The misconception that wings must be curved on top and flat on the bottom is commonly associated with the misconception that the air is required to pass above and below the wing in equal amounts of time. I
A symmetric airfoil, where the top surface is a mirror image of the bottom surface, has zero camber.
At small angles of attack, a symmetric airfoil works better than a highly cambered airfoil. Conversely, at high angles of attack, a cambered airfoil works better than the corresponding symmetric airfoil. otherwise the two are pretty much the same. At any normal angle of attack (up to about 12 degrees), the two airfoils produce virtually identical amounts of lift. Beyond that point the cambered airfoil has a big advantage because it does not stall until a much higher relative angle of attack. As a consequence, its maximum coefficient of lift is much greater.
At high angles of attack, the leading edge of a cambered wing will slice into the wind at less of an angle compared to the corresponding symmetric wing. This doesn’t prove anything, but it provides an intuitive feeling for why the cambered wing has more resistance to stalling.
On some airplanes, the airfoils have no camber at all, and on most of the rest the camber is barely perceptible (maybe 1 or 2 percent). One reason wings are not more cambered is that any increase would require the bottom surface to be concave — which would be a pain to manufacture. A more profound reason is that large camber is only really beneficial near the stall, and it suffices to create lots of camber by extending the flaps when needed, i.e. for takeoff and landing.
Reverse camber is clearly a bad idea (since it causes earlier stall) so aircraft that are expected to perform well upside down (e.g. Pitts or Decathlon) have symmetric (zero-camber) airfoils.
under ordinary conditions, the amount of lift produced by a wing depends on the angle of attack, but hardly depends at all on the amount of camber. This makes sense. In fact, the airplane would be unflyable if the coefficient of lift were determined solely by the shape of the wing. Since the amount of camber doesn’t often change in flight, there would be no way to change the coefficient of lift. The airplane could only support its weight at one special airspeed, and would be unstable and uncontrollable. In reality, the pilot (and the trim system) continually regulate the amount of lift by regulating the all-important angle of attack
http://answers.yahoo.com/question/index ... 902AAjTsY2